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Abstract Decision making under severe lack of infor-

mation is a ubiquitous situation in nearly every applied field

of engineering, policy, and science. A severe lack of

information precludes our ability to determine a frequency

of occurrence of events or conditions that impact the deci-

sion; therefore, decision uncertainties due to a severe lack of

information cannot be characterized probabilistically. To

circumvent this problem, information gap (info-gap) theory

has been developed to explicitly recognize and quantify the

implications of a severe lack of information in decision

making. This paper presents a decision analysis based on

info-gap theory developed for a contaminant remediation

scenario. The analysis provides decision support in deter-

mining the fraction of contaminant mass to remove from the

environment. An info-gap uncertainty model is developed

to characterize uncertainty due to a lack of information

concerning the contaminant flux. The info-gap uncertainty

model groups nested, convex sets of functions defining

contaminant flux over time based on their level of deviation

from a nominal contaminant flux. The nominal contaminant

flux defines a best estimate of contaminant flux over time

based on existing, though incomplete, information. A

robustness function is derived to quantify the maximum

level of deviation from nominal that still ensures compli-

ance for alternative decisions. An opportuneness function is

derived to characterize the possibility of meeting a desired

contaminant concentration level. The decision analysis

evaluates how the robustness and opportuneness change as

a function of time since remediation and as a function of the

fraction of contaminant mass removed.

Keywords Hydrogeology � Decision analysis �
Information gap theory � Transport

1 Introduction

Environmental and earth scientists are frequently required

to provide scientifically defensible support in decision-

making processes related to important environmental

problems (e.g. climate change, contaminant migration,

carbon sequestration, nuclear waste storage, etc.) (Har-

rington and Gidley 1985; Caselton and Luo 1992; Paleol-

ogos and Lerche 1999; Min et al. 2005; Levy 2005;

Tesfamariam and Sadiq 2006; Kentel and Aral 2007). The

decisions are often based on analyses of predictions

obtained with system models representing the physical

processes and conditions related to the problem. For

example, hydrogeologists regularly provide modeling

decision support to aid in the selection of contaminant

remediation strategies (Tartakovsky 2007). In these cases,

the model-based decision support is often driven by model

predictions of contaminant concentrations at a point of

regulatory compliance. However, uncertainties in the

model predictions (predictive uncertainties) generally

complicate the decision analysis. Predictive uncertainties

result from limits in existing information (information is

used here to refer to knowledge and data) about (1) gov-

erning processes, (2) boundary and initial conditions, and

(3) state variables and process parameters.

Probabilistic decision analysis (PDA) estimates proba-

bilistic uncertainties in the physical process model inputs

(prior uncertainties) and propagates these uncertainties
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through the physical process model to obtain estimates of

predictive uncertainties (Schwede et al. 2008). This is a

sound and justifiable approach when the uncertainty of

each combination of model inputs and conditions can be

characterized probabilistically or by a frequency of

occurrence. However, most decisions related to environ-

mental remediation frequently include uncertainties due to

a severe lack of information, and cannot be characterized

probabilistically or by frequency of occurrence. These

types of uncertainties can be considered Knightian uncer-

tainties, after the economist Frank Knight (2002), who

distinguished uncertainty, which, in his definition is

immeasurable (Knightian uncertainty), and risk, which can

be quantified in a lottery sense.

Therefore, in general, a PDA that provides probabilistic

confidence of success associated with a particular decision

is unrealistic and unreliable as the probability distribution

functions of the potential events are unknown. In spite of

this limitation, estimates for the confidence of success or

failure of decisions are commonly requested and provided

using PDA, even when the assumptions required to obtain

the probabilities of events are highly questionable (Ben-

Haim 2006).

Probabilistic attempts to deal with a severe lack of

information require invocation of the ‘‘Principle of Indif-

ference’’ (i.e. an assumption in probability theory that all

currently conceivable events are equally probable). This

‘‘Principle’’ is applied to justify the use of non-informative

priors in Bayesian theory, a commonly used probabilistic

theory used in PDA. However, the validity of this ‘‘Prin-

ciple’’ in a decision analysis cannot be verified (Ben-Haim

2006).

A probabilistic analysis of uncertainties due to a lack of

information are brought further into question if the concept

of a ‘‘collective’’ advocated by, among others, von Mises

(1939), is taken in consideration. According to von Mises,

probabilities are meaningless outside of a collective. For

example, the probability that a 40-year-old man may die in

the next year will be significantly different than the prob-

ability that a 40-year-old man who smokes will die in the

next year, even though the same person can be a member of

both collectives. Therefore, probabilities are only relevant

within the context of a collective, and are meaningless

when applied to a single element without defining a col-

lective. In cases of environmental remediation under severe

lack of information, where the important processes and

properties are characterized vaguely at best, it is hard to

imagine an appropriate definition of a ‘‘collective’’, not to

mention the existence of a dataset capable of characterizing

the probability of success or failure for this ‘‘collective’’.

Applying a model-based PDA under a severe lack of

information requires a leap of faith in assuming that the

collective is a set of predictions produced by system

models whose ability to correctly represent all potential

events cannot be verified or validated due to the lack of

information (Malone 1989; Konikow and Bredehoeft 1992;

Oreskes et al. 1994; Ewing et al. 1999; Bredehoeft 2003).

In general, environmental and earth scientists often

encounter problems where the lack of information is so

severe, that characterizing the probability of all possible

events is infeasible. For example, contaminant concentra-

tion predictions may be highly dependent on infiltration

events driven by precipitation and snowmelt, ultimately

affecting the contaminant mass flux into an aquifer (Reeves

et al. 2010) (infiltration is defined as a groundwater mass

flux at the top of the regional aquifer here; infiltrated water

originates on the ground surface and some of the ground-

water carries the contaminant mass to the aquifer). Statis-

tical characterization of infiltration events based on past

records often provides poor predictions of the future

probabilities of such events (Wallis 1967; Kobold and

Sušelj 2005). The future predictions are additionally

compromised when the predictive (compliance) period

extends for a long period of time (for example, on the order

of the millions of years in the case of nuclear waste

repositories) which requires the consideration of the

potential impact of climate changes (man-made and natu-

ral). For many natural phenomena, including infiltration, a

strong potential exists to encounter a single extreme event

or sequence of less extreme events outside what has been

observed in the past. Uncertainties of this type are due to a

gap in our information (Knightian uncertainties), and not

uncertainties related to which event in a set of events with

known probabilities will occur (probabilistic uncertainties).

The need for non-probabilistic analyses of uncertainty in

order to make reasonable environmental management

decisions has been increasingly recognized. Hipel and Ben-

Haim (1999) develop an information gap (info-gap) deci-

sion analysis for water treatment facility design given a

lack of information concerning the maximum possible flow

rate. Levy et al. (2000) combine multi-attribute value

theory and info-gap decision theory to quantify the

robustness of policy alternatives to ecological info-gap

uncertainties. Fox et al. (2007) demonstrate an info-gap

approach to calculate the power and sample size in eco-

logical investigations with uncertain design parameters and

distributional form. McCarthy and Lindenmayer (2007)

develop an info-gap decision analysis to evaluate timber

production and urban water supply management alterna-

tives subjected to an info-gap uncertainty in fire risk.

Strandlund and Ben-Haim (2008) developed an info-gap

decision analysis to choose between price-based and

quantity-based environmental regulation. Hine and Hall

(2010) developed an info-gap decision analysis for flood

management to account for info-gap uncertainties in flood

models. Riegels et al. (2011) evaluate the effects of info-
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gaps in hydro-economic model inputs on the selection of

water price and target value for an ecological status

parameter. In this paper, we develop an info-gap decision

analysis on a contaminant remediation scenario where an

info-gap exists concerning the contaminant mass flux into

an aquifer.

2 Epistemic starting point of a decision analysis

A PDA requires (1) the identification of all possible con-

sequences, and (2) quantification of the likelihood (proba-

bility) of occurrence of each consequence. An info-gap

decision analysis does not require the explicit identification

of all the possible consequences, and also does not require

the quantification of the likelihoods of the consequences. In

an info-gap decision analysis, the limits of the possible

consequences are assumed unknown, and are therefore

unbounded by the concept of possibility. Info-gap uncer-

tainties are quantified by deviations from a nominal deci-

sion value, increasing in an unbounded fashion as the

deviations increase. A finite amount of uncertainty is not

distributed across the consequences.

Herein lies the difference in epistemic starting points for

a PDA and an info-gap decision analysis. If the epistemic

starting point of the analysis is complete knowledge of

possible consequences and their associated likelihoods, a

PDA is justified and will provide a meaningful decision

analysis that will identify optimal decision scenarios based

on the likelihoods of the possible consequences. In this

case, resorting to an info-gap analysis will ignore the

available information and provide an inferior decision

analysis. However, if the epistemic starting point is

incomplete knowledge of the possible consequences and/or

their likelihoods, the use of PDA is precluded. It is in these

cases, and only these cases, that an info-gap decision

analysis is warranted (Ben-Haim 2006).

While comparisons of new methods with existing well-

established methods can be informative, a quantitative

comparison of PDA and info-gap would be inappropriate.

A comparison of this type would be akin to comparing a

deterministic decision analysis to PDA. If the decision

analysis at hand is deterministic without probabilistic

uncertainties, then an analysis by PDA is meaningless. On

the other hand, if probabilistic uncertainties exist, a

deterministic analysis is inappropriate and a PDA is war-

ranted. An analogous relationship exists between PDA and

info-gap decision analysis. If we know what the possible

consequences are and can quantify their likelihoods, by all

means, PDA is the appropriate method and info-gap need

not be considered. On the other hand, if info-gap uncer-

tainties are present, PDA is inappropriate and an info-gap

decision analysis is warranted. The results of the

comparison will hinge on the assumed epistemic starting

point of the analysis. If probabilistic uncertainties are

assumed to exist, PDA will be more appropriate and

meaningful. If info-gap uncertainties exist, info-gap will be

more appropriate and meaningful.

It is also important to note that the difference in epistemic

starting point leads to distinct types of information resulting

from each decision analysis approach. A PDA will produce

an optimal solution in the form of the decision alternative

with the maximum expected utility. An info-gap decision

analysis will provide tools to guide a decision maker in

making a value judgment concerning the robustness and/or

opportuneness of alternative decisions. These are funda-

mentally different types of results reflecting the difference in

the epistemic starting point of these approaches.

In many cases, both probabilistic and info-gap uncer-

tainties may exist in a decision scenario. In these cases, it is

possible to use a hybrid approach combining probabilistic

and info-gap methods (Ben-Haim 2006; Burgman et al.

2010).

3 Info-gap theory

The info-gap theory provides a general theoretical frame-

work for decision analyses. An info-gap decision analysis

for a specific problem requires three components: (1)

model appropriately characterizing system behavior, (2)

decision uncertainty model consistent with info-gap theory,

(3) decision performance goals (required and desired).

These components are used to derive immunity functions

characterizing the immunity to failure (robustness func-

tion) and immunity to windfall success (opportuneness

function) of alternate decisions.

3.1 System model

The system model in an info-gap decision analysis char-

acterizes the system performance based on the alternate

decisions subjected to the ambient uncertainty. For envi-

ronmental management decision scenarios, this will gen-

erally be a physical process model characterizing the

natural and man-made processes controlling critical out-

puts influencing the decision.

3.2 Info-gap uncertainty model

Info-gap uncertainty models rank an info-gap by the uncer-

tainty parameter a. The uncertainty model is comprised of

nested sets of uncertain entities (i.e. parameters, functions,

etc. which have info-gap uncertainties) ranked by the largest

info-gap that can be included in the set (Ben-Haim 2006).

This approach is in sharp contrast to probabilistic or fuzzy
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logic approaches to uncertainty, which distribute uncertainty

across all potential events to define recurrence-frequency or

plausibility (Ben-Haim 2006). Info-gap uncertainty models

provide less constraints and are intended for cases where lack

of information precludes the ability to distribute uncertain-

ties across all potential events, or even identify all potential

events. Various types of info-gap decision uncertainty

models include energy-bound, envelope-bound, slope-

bound, and Fourier-bound models (Ben-Haim 2006). The

selection and development of info-gap uncertainty models is

scenario specific requiring few axiomatic constraints.

3.3 Decision performance goals

Performance goals in an info-gap decision analysis express

a required or desired reward. In environmental decision

scenarios, a required performance goal is commonly a

constant fixed by a regulatory standard (e.g. maximum

concentration limit; MCL). A desired performance goal is

typically not a regulatory requirement, but may entail a

more stringent goal than the regulatory standard. For

instance, it may be desirable by decision makers or

stakeholders to meet a stringent health standard that is

below the regulatory standard.

3.4 Immunity functions

The immunity functions define the immunity to failure

(robustness) and immunity to windfall (opportuneness) of

alternate decisions. The robustness function defines the

maximum horizon of uncertainty (a) where failure can

occur. As we typically lack the information to know the

actual horizon of uncertainty, the info-gap uncertainty

model is an unbounded function of the horizon of uncer-

tainty. This can be expressed linguistically as

baðqÞ ¼ maxfa
: the required performance goal is satisfiedg ð1Þ

where q is a vector containing the alternate decisions and

baðqÞ is the robustness function.

The opportuneness function defines the minimum hori-

zon of uncertainty (a) where windfall success cannot occur.

Large values of opportuneness indicate that large devia-

tions from nominal (large ambient uncertainty) are needed

in order to enable the potential of exceptional success.

Small values of opportuneness indicate that a low ambient

uncertainty provides the potential for exceptional success.

Linguistically, opportuneness can be expressed as

bbðqÞ ¼ minfa : the possibility of meeting

the desired performance goal existsg
ð2Þ

where bbðqÞ is the opportuneness function.

The complimentary nature of robustness and oppor-

tuneness are evident. The robustness and opportuneness

can be sympathetic or antagonistic in a decision analysis,

depending on the particular scenario.

4 Contaminant remediation decision scenario

The decision scenario of contaminant remediation pre-

sented below is representative of an actual case study at

Los Alamos National Laboratory (LANL) related to an

existing contamination site. A diagram of the contaminant

spill scenario is presented in Fig. 1 and described below. A

contaminant spill with known mass has been released on

the ground surface and is spatially distributed in the soil

below the release location. The contaminant is known to

chemically degrade over time (for example, due to radio-

active decay or chemical hydrolysis). An aquifer utilized

for municipal water supply lies below the contaminated

soil. A compliance point is located near the spill where

regulatory health standards dictate the maximum contam-

inant concentration. Exceeding the regulatory standard will

compromise the municipal water supply, incur fines from

the regulatory agency, and compromise the integrity of

those involved in the remediation effort. Removing the

contaminant from the soil is expensive, and entails risks of

exposure to workers and redistribution of the contaminant

in the environment. A decision analysis is desired to

determine the robustness of selecting various fractions of

the original mass to remove in order to ensure regulatory

compliance given an info-gap in the contaminant mass flux

into the aquifer (contaminant plume source strength). The

proposed info-gap analysis can be applied to physical

process models with different complexity. The analysis

presented below uses a relatively simple analytical model,

which can be considered a first step in a tiered process that

utilizes more complicated models in subsequent stages.

4.1 Contaminant transport model

An analytical solution describing the two-dimensional

advective-dispersive transport of a contaminant within an

aquifer is (Wang and Wu 2009)

Fig. 1 Contamination remediation scenario diagram
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Cðx; y; tÞ ¼ 1

4pn
ffiffiffiffiffiffiffiffiffiffiffi

DxDy

p

Z
t

0

Iðt � sÞ

� exp �ks � ðx � usÞ2

4Dxs
� y2

4Dys

" #

ds
s
;

�1\ x; y \1; t [ 0; ð3Þ

where C(x, y, t) [ML-3] is a contaminant concentration in the

aquifer, I(t) [ML-1 T-1] is the transient contaminant flux

(source strength) at the point x = y = 0 per unit depth of the

aquifer, n is the porosity, Dx and Dy are the principal dispersion

coefficients [L2 T-1],k [T-1] is the first-order constant of decay,

and u [L T-1] is the pore water velocity. The groundwater flow

is along the x direction. Assuming that the point of compliance is

located directly down gradient from the plume source along the x

axis, we can simplify the model by setting y = 0 as

Cðx; tÞ ¼ 1

4pn
ffiffiffiffiffiffiffiffiffiffiffi

DxDy

p

Z
t

0

Iðt

� sÞ exp �ks � ðx � usÞ2

4Dxs

" #

ds
s
: ð4Þ

Let us define an impulse response function,

hðx; tÞ ¼ 1

4pnt
ffiffiffiffiffiffiffiffiffiffiffi

DxDy

p exp �kt � ðx � utÞ2

4Dxt

" #

; ð5Þ

and substitute this into Eq. 4, allowing the system model

that will be applied in the info-gap analysis to be defined as

Cðx; tÞ ¼
Z

t

0

Iðt � sÞhðx; sÞds: ð6Þ

The functional form of Eq. 6 can be used in general to

describe the effect of an impulse on a system. Therefore,

while the application presented here is contaminant

remediation with uncertain contaminant flux, much of the

development of the decision analysis presented here can

be applied to other decision analyses with analogous

uncertainties due to unknown impulse functions.

4.2 Contaminant flux info-gap uncertainty model

The info-gap uncertainty model for the contaminant flux into an

aquifer is defined as the potential for deviations in the con-

taminant flux from a nominal value, and can be expressed as

Uða; eIðtÞÞ ¼ IðtÞ :

R t

0
½IðtÞ � eIðtÞ�2 dt
R t

0
eI2ðtÞ dt

� a2

( )

; a� 0;

ð7Þ

where eIðtÞ is the nominal contaminant flux function and a
defines levels of info-gap uncertainty describing deviation

of the contaminant flux from nominal. Equation 7 defines

an info-gap uncertainty model representing nested, convex

sets of contaminant flux functions I(t). Functions in these

sets can contain a single extremely large short-duration

event (i.e. brief period of intense rainfall leading to high

infiltration and subsequent contaminant leaching), a high

frequency of relatively smaller events (i.e. a period of small

magnitude, or long duration, rainfall events resulting in a

long duration of sustained elevated infiltration and sub-

sequent contaminant leaching), or any combination thereof,

as long as
R t

0
½IðtÞ � eIðtÞ�2 dt=

R t
0
eI 2ðtÞ dt� a2:

Equation 7 presents an instance of an energy-bound info-

gap uncertainty model. Energy-bound models have the ability

to capture uncertainties in transients, where prior information

concerning the potential for large deviations or series of small

deviation is extremely limited. Note that Eq. 7 defines an

unbounded family of nested sets because a is unknown and

unbounded. In other words, the info-gap model of uncertainty

does not specify a worst case, nor is a finite amount of

uncertainty distributed across presumably known events. This

presents a fundamental difference between an info-gap

uncertainty model and a probabilistic uncertainty model.

4.3 Contaminant concentration performance goals

In the current scenario, the required performance goal is

fixed by regulatory standards. The performance require-

ment is defined as the regulatory limit on the contaminant

concentration (e.g. MCL) at the point of compliance as

Cðx0; tÞ � Cc; 8 t [ 0; ð8Þ

where x0 is a point of compliance (e.g. site boundary,

pumping well) and Cc is the critical contaminant concen-

tration based on a regulatory standard.

In decision analyses, frequently, there is a desired per-

formance goal that is not strictly required but would be

beneficial if met. This allows us to explore the opportunity

of achieving this performance given alternative decisions.

In a contaminant remediation decision scenario, the desired

system performance may be a recommended contaminant

concentration threshold that is less than the regulatory

standard. The desired performance goal is described as

Cðx0; tÞ � Cw; 8 t [ 0; ð9Þ

where Cw is the desired contaminant concentration. Satis-

fying inequality (8) would be a windfall.

The performance goals expressed in inequalities (8) and

(9) illustrate the fact that uncertainty can be both perni-

cious, causing failure, and propitious, enabling the poten-

tial of exceptional windfall success (Ben-Haim 2006). For

example, the ambient uncertainty is pernicious when

making a decision to ensure the performance requirement

of inequality (8), while it is propitious when making a
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decision to allow the potential to surpass the performance

expressed in inequality (9).

4.4 Robustness function

Considering the contaminant flux uncertainty model (Eq. 7)

and the performance requirement (Eq. 8), the decision

robustness function can be expressed as

baðq; Cc; tÞ ¼ max a : max
I2Uða;eI Þ

Cðx0; t; qÞ
 !

� Cc

( )

;

8 t [ 0;

ð10Þ

where q is the fractional percent of the contaminant mass

removed, defined as q = Mr/Mt, where Mr is the mass

removed at t = 0 and Mt is the total mass released in the

environment. The robustness function ba is dimensionless.

More complicated schedules for contaminant removal can

also be applied: for example, mass removal within a given

period of time, or periodically over several periods. The

contaminant flux into the aquifer and contaminant con-

centrations in the aquifer will decrease with increasing

q, therefore I = f(t, q) and C = f(x, t, q).

Equation 6 can be expressed as the addition of the

nominal concentration and the deviation from the nominal

concentration at location x0 as

Cðx0; t; qÞ ¼
Z

t

0

eIðt � s; qÞhðx0; sÞds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

eCðx0; t; qÞ

þ
Z

t

0

½Iðt � s; qÞ � eIðt � s; qÞ�hðx0; sÞds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cðx0; t; qÞ� eCðx0; t; qÞ

ð11Þ

where the nominal concentration eCðx0; t; qÞ is the

concentration resulting from the nominal contaminant flux.

An upper limit can be determined for the second integral in

Eq. 11 by using the Schwarz inequality (Weisstein 2011) as

Z
t

0

½Iðt � s; qÞ � eIðt � s; qÞ�hðx0; sÞds

0

@

1

A

2

�
Z

t

0

½Iðs; qÞ

� eIðs; qÞ�2ds
Z

t

0

hðx0; sÞ2ds

ð12Þ

Using inequality (12) in Eq. 11 leads to the following

inequality:

Cðx0; t; qÞ� eCðx0; t; qÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z
t

0

½Iðs; qÞ � eIðs; qÞ�2ds
Z

t

0

hðx0; sÞ2ds

v

u

u

u

t ð13Þ

Considering the info-gap uncertainty model (Eq. 7), it is

recognized that

Z
t

0

½Iðs; qÞ � eIðs; qÞ�2ds� a2

Z
t

0

eI2ðsÞds: ð14Þ

Substituting this into inequality (13), a maximum

concentration at x0 up to uncertainty a can be defined as

max
I2Uða;eI Þ

Cðx0; t; qÞ ¼ eCðx0; t; qÞ

þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z
t

0

eI2ðs; qÞds
Z

t

0

h2ðx0; sÞds

v

u

u

u

t

ð15Þ

Setting the maximum concentration equal to Cc, as

defined by inequality (8), and solving for a results in the

robustness function as a function of time

baðq; tÞ ¼ Cc � eCðx0; t; qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R t

0
eI2ðs; qÞds

R t

0
h2ðx0; sÞds

q : ð16Þ

As inequality (8) requires compliance at all times, the

robustness function considering all times is

baðqÞ ¼ min
t [ 0

baðq; tÞ: ð17Þ

where baðq; tÞ is defined in Eq. 16. The robustness is

dimensionless and defines the maximum fractional error in

the actual contaminant flux from nominal that still ensures

compliance for alternative decisions.

4.5 Opportuneness function

Considering the desired performance described by Eq. 9, a

complimentary equation to Eq. 10 can be defined for the

opportuneness function bb; also dimensionless, as

bbðq; Cw; tÞ ¼ min a : min
I2Uða;eI Þ

Cðx0; t; qÞ
 !

� Cw

( )

;

8 t [ 0: ð18Þ

The complimentary nature of robustness and

opportuneness is apparent by comparison of Eqs. 10 and 18.

In our decision scenario, the opportuneness function

quantifies the least level of uncertainty required to maintain

the potential that Cðx0; t; qÞ will not exceed Cw. This leads

to an equation complimentary to Eq. 15 defining the min-

imum possible concentration up to uncertainty a as
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min
I2Uða;eI Þ

Cðx0; t; qÞ ¼ eCðx0; t; qÞ

� a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z
t

0

eI2ðs; qÞds
Z

t

0

h2ðx0; sÞds

v

u

u

u

t

ð19Þ

Setting the minimum concentration equal to Cw and

solving for a produces the opportuneness function

(complimentary to the robustness function; Eq. 16) as

bbðq; tÞ ¼
eCðx0; t; qÞ � Cw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R t

0
eI2ðs; qÞds

R t

0
h2ðx0; sÞds

q : ð20Þ

As the performance expressed by inequality (9) is desired

at all times, the opportuneness function considering all

times is

bbðqÞ ¼ max
t [ 0

bbðq; tÞ: ð21Þ

where bbðq; tÞ is defined in Eq. 20. The opportuneness is

dimensionless and defines the minimum fractional error in

the actual contaminant flux from the nominal that main-

tains the possibility of meeting the desired performance

goal.

5 Contaminant remediation info-gap decision analysis

The nominal contaminant flux into the aquifer is defined as

eIðt; qÞ ¼ 1; 000 � ð1 � qÞ � exp½�0:05 � t� [kg/m/a] and

plotted for fractions of contaminant removed q as a func-

tion of time since remediation in Fig. 2a. Constraining this

estimate is not possible without further field studies or data

acquisition. The following info-gap decision analysis will

evaluate how wrong can our estimate of the contaminant

flux into the aquifer be and still ensure compliance at

various fractions of contaminant mass removal. The asso-

ciated nominal predictions of concentration at the com-

pliance point x0 ¼ 20 m are plotted in Fig. 2b. It is

assumed that the critical regulated concentration at x0 is

Cc = 25 kg/m3 and that it would be a desirable outcome if

the concentration did not exceed Cw = 5 kg/m3.

It is assumed that the parameters of the contaminant

transport model (Eq. 4) are well known and with negligible

uncertainty compared to the info-gap in the contaminant

flux. These parameters are defined as Dx = 30 m2/a, Dy = 7

m2/a, n = 0.1, k = 1 /a, and u = 30 m/a. These values are

representative of the flow conditions at the LANL site.

Extension of the current analysis by incorporation of prob-

abilistic and info-gap uncertainties of these parameters is

possible (Hipel and Ben-Haim 1999; Ben-Haim 2006).

The robustness function is plotted versus time since

remediation for various fractions of contaminant mass

removed q in Fig. 3. Robustness functions at a particular

time since remediation versus the fraction of contaminant

removed are plotted in Fig. 4 (refer to Eq. 16). As we are

interested in compliance at all times, the minimum

robustness for each decision q is also plotted as a dotted

line in Fig. 4 (refer to Eq. 17). In our example, robustness

represents the maximum fractional error in the nominal

contaminant flux that ensures that Cðx0; t; qÞ\ Cc (Eq.

10). For example, a value of ba ¼ 1 indicates that the

fractional error in the nominal can be 100% (i.e. potential

deviations from the nominal contaminant flux can be as

high as twice the nominal contaminant flux), and the

associated decision still ensures compliance.

Plots of the opportuneness functions are presented in

Figs. 5 and 6. In this example, the opportuneness function

represents the minimum fractional error in the nominal

contaminant flux that sustains the possibility that

Cðx0; t; qÞ\ Cw (Eq. 18). For example, a value of bb ¼
0:1 indicates that the relative error in the nominal con-

taminant flux must be at least 10% to enable the possibility

that the concentration will remain below the desired per-

formance goal.

In Figs. 3, 4, 5, and 6, the relationship between

robustness/opportuneness and effort is apparent. Increased

(improved) robustness and decreased (improved) oppor-

tuneness are only possible with increased effort and cost

(proportional to the fraction of contaminant mass removed

q). Interesting variations in robustness for given times since

remediation as a function of q are observed in Fig. 4,

demonstrating that for small values of q, late times have

greater decision robustness, while for larger values of

q, early times demonstrate greater robustness. This can be

explained by noting that the robustness in our example

represents the minimum fractional error in the actual

contaminant flux from nominal that still ensure compliance

at all times, and that the contaminant flux is included in an

integral over time (refer to Eq. 17). At early times, the

concentrations are high, but the duration of contaminant

flux is short, while at late times, the concentrations are

lower, but the duration of contaminant flux included in the

integral is longer. Therefore, at small values of q, less

fractional error in the contaminant flux is necessary at

earlier times to fail compliance. At later times, the system

has experienced a longer duration in which deviations from

the nominal contaminant flux could have occurred, there-

fore, even though concentrations are lower, the accumu-

lated deviations from nominal contaminant flux reduce the

fractional error necessary to fail compliance. This dem-

onstrates the importance of considering the robustness at

all times. The particular interaction between robustness at

Stoch Environ Res Risk Assess (2013) 27:159–168 165

123



early and late times observed in Fig. 4 is dependent on the

compliance location, and would be different for different

locations.

Robustness for all times approach infinity as q! 1; as

removing all the contaminant will provide infinite robust-

ness (of course, at a potentially unjustifiable cost). In

Figs. 5 and 6, it is clear that the opportuneness increases (bb
decreases) with time and fraction of mass removed. In

Figs. 5 and 6, it can be determined that after 30 years, the

opportuneness becomes zero for the decision to do nothing

(q = 0), while at 90% removal (q = 0.9), no uncertainty is

necessary to allow the possibility that Cðx0; tÞ\ Cw for all

times.

Figure 7 plots the decision robustness (17) and oppor-

tuneness (21) functions together. From Eqs. 16 and 20, the

following expression can be derived to illustrate the com-

plimentary relationship between robustness and oppor-

tuneness at time t in the current decision scenario:

bbðq; tÞ ¼ Cc � Cw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R t
0
eI2ðs; qÞds

R t
0

h2ðx0; sÞ
q � baðq; tÞ; ð22Þ

where it is apparent that if eI does not change too strongly

with q, then bb will decrease as ba increases. As it is

desirable to select an alternative that increases ba and

(a)

(b)

Fig. 2 Nominal contaminant flux into the aquifer (a) and nominal

contaminant concentration at the compliance point (b) over time since

remediation for various fractions of contaminant removed q

Fig. 3 Robustness function versus time since remediation for various

fractions of contaminant mass removed q. Note that robustness is

plotted on a log scale

Fig. 4 Robustness function versus the fraction of contaminant

removed for various times since remediation (refer to Eq. 16); the

dotted line plots the minimum robustness at any time (refer to Eq. 17).

Note that robustness is plotted on a log scale

Fig. 5 Opportuneness function versus time since remediation for

various fractions of contaminant mass removed q. Note that bbðq ¼
0:9; tÞ ¼ 0 for all time
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decreases bb; these two objectives would be sympathetic

under these circumstances. An increase (improvement) in

robustness would decrease (improve) the opportuneness.

Figure 7 can be used by a decision maker to evaluate the

implications of the ambient uncertainty on alternative

decisions. For example, at values of q less than around 0.04

(removal of 4% of the contaminant mass), the decision

robustness is zero, indicating that failure to meet compli-

ance (the required performance goal) is ensured based on

the nominal contaminant flux. It should be noted that if the

actual contaminant flux is lower than the nominal estimate,

failure may not occur for low values of fraction removed.

Decisions in this range also require the largest potential

deviations from the nominal to enable the possibility of

meeting the desired goal (Eq. 9) (relative error in the

contaminant flux of at least 57%, or bb ¼ 0:57; at

q = 0.04). A decision to remove approximately 6%

(q = 0.06) of the contaminant mass will ensure compliance

(the required performance goal) only if the actual con-

taminant flux deviates from the nominal by less than 1%

(ba ¼ 0:01), while the corresponding potential for excep-

tional success will require deviations from the nominal of

at least approximately 56% (bb ¼ 0:56). Deciding to

remove over approximately 76% (q = 0.76) of the mass

ensures meeting the desired goal at zero deviation from the

nominal (decisions in this range ensure that the concen-

tration will be below Cw based on the nominal contaminant

flux), while compliance is ensured in this range at

increasing potential deviation from nominal. Deciding to

remove 50% (q = 0.5) of the mass will ensure compliance

if the actual contaminant flux deviates from the nominal by

less than around 39% (ba ¼ 0:39), while the corresponding

potential for exceptional success will require the actual

contaminant flux to deviate by at least 39% (bb ¼ 0:39).

Other decisions can be evaluated similarly.

Based on Fig. 7, the decision makers may want to select

a decision in a range where (1) the robustness is greater

than zero and (2) the opportuneness is greater than zero if

there is relatively higher acceptance of potential risk (i.e.

fraction of mass removal q between 0.1 and 0.75). If

decision makers prefer to select a decision with relatively

lower risk, an alternative decision in the range where the

opportuneness is equal or very close to zero (q [ 0.75) will

provide higher immunity to failure. Decisions in the range

where the robustness is equal or very close to zero

(q \ 0.1) provide very low immunity to failure, and are

potentially unacceptable.

In an actual application, there may be some concept of

the cost associated with each q. The relationship between

the cost and q is not expected to be linear; typically, the

cost increases sharply with the increase of q. As a result,

analogous figures to Figs. 3 and 4 can be formulated

plotting decision robustness versus cost. A decision maker

can use these plots to determine the cost to achieve dif-

ferent levels of robustness and opportuneness. This info-

gap decision analysis can be extended to incorporate other

info-gap uncertainties due to severe lack of information of

other model inputs or conditions; for example, information

regarding the groundwater velocity or the aquifer disper-

sion in the zone between the plume source and the com-

pliance point can be extremely limited. If adequate

information is available to determine probabilistic uncer-

tainties of other model inputs or conditions, these can also

be incorporated in the analysis.

6 Conclusions

Geoscientists are often confronted with decision scenarios

related to environmental management where the lack of

Fig. 6 Opportuneness function versus the fraction of contaminant

removed for various times since remediation (refer to Eq. 20); the

dotted line plots the maximum opportuneness for all times (refer to

Eq. 21). Note that bbðq; t ¼ 30aÞ ¼ 0 for all q

Fig. 7 Robustness and opportuneness functions considering all times

(refer to Eqs. 17 and 21, respectively) versus the fraction of

contaminant removed. Note that both robustness and opportuneness

are plotted on different arithmetic scales in this figure
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information precludes the ability to reasonably estimate

probabilistic uncertainty models. In these cases, it is not

possible to evaluate robustness in the context of the prob-

ability of exceeding a contaminant concentration at a

compliance point (Caselton and Luo 1992). This paper

demonstrates an approach that can be applied in these cases

of severe uncertainty using an info-gap decision analysis.

The proposed decision-making framework can not only be

applied for environmental management of contaminant

remediation, but also to problems such as radioactive waste

storage, carbon sequestration, oil/gas extraction, and cli-

mate change.
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